English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 60984/93521 (65%)
造访人次 : 1570639      在线人数 : 174
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/122708


    题名: An approach for sample size determination of average bioequivalence based on interval estimation
    作者: Chiang, Chieh;Hsiao, Chin‐Fu
    日期: 2017-03-30
    上传时间: 2022-05-09 12:10:49 (UTC+8)
    摘要: In 1992, the US Food and Drug Administration declared that two drugs demonstrate average bioequivalence (ABE) if the log-transformed mean difference of pharmacokinetic responses lies in (−0.223, 0.223). The most widely used approach for assessing ABE is the two one-sided tests procedure. More specifically, ABE is concluded when a 100(1 − 2α) % confidence interval for mean difference falls within (−0.223, 0.223). As known, bioequivalent studies are usually conducted by crossover design. However, in the case that the half-life of a drug is long, a parallel design for the bioequivalent study may be preferred. In this study, a two-sided interval estimation — such as Satterthwaite's, Cochran–Cox's, or Howe's approximations — is used for assessing parallel ABE. We show that the asymptotic joint distribution of the lower and upper confidence limits is bivariate normal, and thus the sample size can be calculated based on the asymptotic power so that the confidence interval falls within (−0.223, 0.223). Simulation studies also show that the proposed method achieves sufficient empirical power. A real example is provided to illustrate the proposed method.
    關聯: Statistics in medicine 36 (7), 1068-1082
    DOI: 10.1002/sim.7202
    显示于类别:[數學學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML11检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈