English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 60868/93650 (65%)
造访人次 : 1147625      在线人数 : 20
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/122693

    题名: Sample size determination for individual bioequivalence inference
    作者: Chiang, Chieh;Hsiao, Chin-Fu;Liu, Jen-Pei
    日期: 2014-10-13
    上传时间: 2022-05-09 12:10:24 (UTC+8)
    摘要: Statistical criterion for evaluation of individual bioequivalence (IBE) between generic and innovative products often involves a function of the second moments of normal distributions. Under replicated crossover designs, the aggregate criterion for IBE proposed by the guidance of the U.S. Food and Drug Administration (FDA) contains the squared mean difference, variance of subject-by-formulation interaction, and the difference in within-subject variances between the generic and innovative products. The upper confidence bound for the linearized form of the criterion derived by the modified large sample (MLS) method is proposed in the 2001 U.S. FDA guidance as a testing procedure for evaluation of IBE. Due to the complexity of the power function for the criterion based on the second moments, literature on sample size determination for the inference of IBE is scarce. Under the two-sequence and four-period crossover design, we derive the asymptotic distribution of the upper confidence bound of the linearized criterion. Hence the asymptotic power can be derived for sample size determination for evaluation of IBE. Results of numerical studies are reported. Discussion of sample size determination for evaluation of IBE based on the aggregate criterion of the second moments in practical applications is provided.
    關聯: PLoS ONE 9(10), e109746
    DOI: 10.1371/journal.pone.0109746
    显示于类别:[數學學系暨研究所] 期刊論文


    档案 描述 大小格式浏览次数



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈