English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62805/95882 (66%)
Visitors : 3917714      Online Users : 673
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/122674


    Title: Study of Gas-to-Liquid Heat Pipe Heat Exchanger
    Authors: Gupta, Pratik Prakash;Senthilkumar, Sundararaj;Kang, Shung-Wen
    Keywords: heat pipe;heat exchanger;waste heat recovery;gas-to-liquid;effectiveness;numerical analysis
    Date: 2022-04-20
    Issue Date: 2022-05-02 12:10:19 (UTC+8)
    Publisher: MDPI; Multidisciplinary Digital Publishing Institute
    Abstract: This study is focused on the study and development of a gas-to-liquid heat pipe heat exchanger (HPHE) based on numerical and experimental analysis. Stainless steel heat pipes were installed inside the heat exchanger in the form of three equilateral triangles, staggered into a hexagonal configuration to simulate the waste heat recovery from hot exhaust gas to a water flow. The first main aim of this study was focused on 3D design and numerical analysis, which were used to create and calculate the effect of similar input conditions on the overall system. The system was tested for the overall heat transfer by measuring the temperature change in both fluids. The heat transfer and overall average temperature were used to calculate the effectiveness of the system. In the second part of this study, a test of the waste heat recovery was undertaken with this setup, using water as the cooling fluid. The study was conducted with different input velocities and temperatures of waste hot air, controlled simultaneously by the input fan and air heater, whereas the cooling water was kept at a steady state of 30 ◦C and 0.0156 kg/s at the input. The hot air velocity was controlled by fans with different inlet air velocities of 0.3 m/s, 0.5 m/s, and 0.7 m/s. Moreover, the temperature of the air was changed from 150 ◦C to 250 ◦C with a step of 25 ◦C. The increase in temperature and the velocity of air was directly proportional to the amount of heat transferred from the air to the cooling water, and the effectiveness was also found to be inversely proportional to both of the varying input parameters. The numerical study showed a maximum increase of 12% in the heat transfer. The output temperatures of hot and cold fluids showed maximum increases of 7 K and 3 K, respectively. The numerical system with such input parameters can be evaluated further to predict the behavior of changes in the design and parameters.
    Relation: Processes 10(5), 808
    DOI: 10.3390/pr10050808
    Appears in Collections:[Graduate Institute & Department of Mechanical and Electro-Mechanical Engineering] Journal Article

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML89View/Open
    Study of Gas-to-Liquid Heat Pipe Heat Exchanger.pdf3763KbAdobe PDF81View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback