English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 62797/95867 (66%)
造訪人次 : 3735776      線上人數 : 715
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/122610


    題名: Application of high specific surface area Ag/AgCl/TiO2 coupled photocatalyst fabricated by fused filament fabrication
    作者: Lin, Ching‑bin
    關鍵詞: Silver chloride;Fused filament fabrication;Methyl blue dye;Escherichia coli;Reliability
    日期: 2022-03-17
    上傳時間: 2022-03-23 12:11:20 (UTC+8)
    摘要: This study used a three-dimensional (3D) printing process to develop the Ag/AgCl/TiO2 coupled photocatalyst with a specific surface area of 748 mm2/g. We examined the catalytic capability of this photocatalyst in degrading methyl blue (MB) dye and sterilizing Escherichia coli as well as the durability and reliability of its continuous use. A TiO2 module was constructed through fused filament fabrication (FFF), and the adopted 3D printing filament was composed of anatase TiO2 nanoparticles, stearic acid, wax, and a plasticizer. The green compact of the TiO2 module was subjected to solvent debinding, thermal debinding, and sintering to obtain a fundamental structure that was subsequently coupled with AgCl through a precipitation reaction. Ultraviolet radiation was used for the photoreduction to obtain the Ag/AgCl/TiO2 coupled photocatalyst coupling module. This photocatalyst can effectively degrade MB dye and disinfect E. coli. The degradation of MB dye and sterilization of E. coli were conducted under visible and ultraviolet light. The degradation of MB dye by the Ag/AgCl/TiO2 coupled photocatalyst was a first-order reaction. In addition, this coupled photocatalyst could retain its MB dye degradation rate (95%) for five cycles. E. coli was sterilized using the prepared photocatalytic module in a 120-min test, and this sterilization phenomenon could be presented as a hyperbolic reaction. The photocatalytic module manufactured in this study through FFF could efficiently degrade pollutants in water, and its durability and reliability after repeated use have been approved.
    關聯: The International Journal of Advanced Manufacturing Technology 120, p.4539-4550
    DOI: 10.1007/s00170-022-09038-x
    顯示於類別:[機械與機電工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    Application of high specific surface area Ag AgCl TiO2 coupled photocatalyst fabricated by fused filament fabrication.pdf2450KbAdobe PDF1檢視/開啟
    index.html0KbHTML53檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋