淡江大學機構典藏:Item 987654321/122577
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62830/95882 (66%)
Visitors : 4033084      Online Users : 1005
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/122577


    Title: Observation of gravitational waves from two neutron star-black hole coalescences
    Authors: Collaboration, LIGO Scientific;Collaboration, Virgo;Liu), KAGRA Collaboration (include Guo Chin
    Date: 2021-06-29
    Issue Date: 2022-03-14 12:10:35 (UTC+8)
    Abstract: We report the observation of gravitational waves from two compact binary coalescences in LIGO's and Virgo's third observing run with properties consistent with neutron star–black hole (NSBH) binaries. The two events are named GW200105_162426 and GW200115_042309, abbreviated as GW200105 and GW200115; the first was observed by LIGO Livingston and Virgo and the second by all three LIGO–Virgo detectors. The source of GW200105 has component masses $8.{9}_{-1.5}^{+1.2}$ and $1.{9}_{-0.2}^{+0.3}\,{M}_{\odot }$, whereas the source of GW200115 has component masses $5.{7}_{-2.1}^{+1.8}$ and $1.{5}_{-0.3}^{+0.7}\,{M}_{\odot }$ (all measurements quoted at the 90% credible level). The probability that the secondary's mass is below the maximal mass of a neutron star is 89%–96% and 87%–98%, respectively, for GW200105 and GW200115, with the ranges arising from different astrophysical assumptions. The source luminosity distances are ${280}_{-110}^{+110}$ and ${300}_{-100}^{+150}\,\mathrm{Mpc}$, respectively. The magnitude of the primary spin of GW200105 is less than 0.23 at the 90% credible level, and its orientation is unconstrained. For GW200115, the primary spin has a negative spin projection onto the orbital angular momentum at 88% probability. We are unable to constrain the spin or tidal deformation of the secondary component for either event. We infer an NSBH merger rate density of ${45}_{-33}^{+75}\,{\mathrm{Gpc}}^{-3}\,{\mathrm{yr}}^{-1}$ when assuming that GW200105 and GW200115 are representative of the NSBH population or ${130}_{-69}^{+112}\,{\mathrm{Gpc}}^{-3}\,{\mathrm{yr}}^{-1}$ under the assumption of a broader distribution of component masses.
    Relation: The Astrophysical Journal Letters 915(1)
    DOI: 10.3847/2041-8213/ac082e
    Appears in Collections:[Graduate Institute & Department of Physics] Journal Article

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML48View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback