English  |  正體中文  |  简体中文  |  Items with full text/Total items : 61875/94645 (65%)
Visitors : 1635280      Online Users : 11
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/122569


    Title: Diving below the spin-down limit: Constraints on gravitational waves from the energetic young pulsar PSR J0537-6910
    Authors: Collaboration, LIGO Scientific;Collaboration, Virgo;Liu), KAGRA Collaboration (include Guo Chin
    Keywords: Gravitational waves
    Date: 2021-05-31
    Issue Date: 2022-03-14 12:10:22 (UTC+8)
    Abstract: We present a search for quasi-monochromatic gravitational-wave signals from the young, energetic X-ray pulsar PSR J0537−6910 using data from the second and third observing runs of LIGO and Virgo. The search is enabled by a contemporaneous timing ephemeris obtained using Neutron star Interior Composition Explorer (NICER) data. The NICER ephemeris has also been extended through 2020 October and includes three new glitches. PSR J0537−6910 has the largest spin-down luminosity of any pulsar and exhibits fRequent and strong glitches. Analyses of its long-term and interglitch braking indices provide intriguing evidence that its spin-down energy budget may include gravitational-wave emission from a time-varying mass quadrupole moment. Its 62 Hz rotation frequency also puts its possible gravitational-wave emission in the most sensitive band of the LIGO/Virgo detectors. Motivated by these considerations, we search for gravitational-wave emission at both once and twice the rotation frequency from PSR J0537−6910. We find no signal, however, and report upper limits. Assuming a rigidly rotating triaxial star, our constraints reach below the gravitational-wave spin-down limit for this star for the first time by more than a factor of 2 and limit gravitational waves from the l = m = 2 mode to account for less than 14% of the spin-down energy budget. The fiducial equatorial ellipticity is constrained to less than about 3 ×10−5, which is the third best constraint for any young pulsar.
    Relation: The Astrophysical Journal Letters 913(2)
    DOI: 10.3847/2041-8213/abffcd
    Appears in Collections:[Graduate Institute & Department of Physics] Journal Article

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML17View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback