淡江大學機構典藏:Item 987654321/122568
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 63911/96578 (66%)
Visitors : 3974097      Online Users : 191
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/122568


    Title: All-sky search for short gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run
    Authors: LIGO;Virgo;KAGRA Collaboration (include Guo Chin Liu)
    Date: 2021-12-23
    Issue Date: 2022-03-14 12:10:20 (UTC+8)
    Abstract: This paper presents the results of a search for generic short-duration gravitational-wave transients in data from the third observing run of Advanced LIGO and Advanced Virgo. Transients with durations of milliseconds to a few seconds in the 24–4096 Hz frequency band are targeted by the search, with no assumptions made regarding the incoming signal direction, polarization, or morphology. Gravitational waves from compact binary coalescences that have been identified by other targeted analyses are detected, but no statistically significant evidence for other gravitational wave bursts is found. Sensitivities to a variety of signals are presented. These include updated upper limits on the source rate density as a function of the characteristic frequency of the signal, which are roughly an order of magnitude better than previous upper limits. This search is sensitive to sources radiating as little as ∼10−10  M⊙c2 in gravitational waves at ∼70  Hz from a distance of 10 kpc, with 50% detection efficiency at a false alarm rate of one per century. The sensitivity of this search to two plausible astrophysical sources is estimated: neutron star f modes, which may be excited by pulsar glitches, as well as selected core-collapse supernova models.
    Relation: PHYSICAL REVIEW D 104(12), 122004
    DOI: 10.1103/PhysRevD.104.122004
    Appears in Collections:[Graduate Institute & Department of Physics] Journal Article

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML76View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback