English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 62830/95882 (66%)
造訪人次 : 4047870      線上人數 : 595
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/122539


    題名: Mesoporous zirconium pyrophosphate for the adsorption of fluoride from dilute aqueous solutions
    作者: Chen, Ching-Lung;Shih, Yu-Jen;Su, Jenn Fang;Chen, Kuan-Ling;Huang, Chin-Pao
    關鍵詞: Mesoporous;Zirconium pyrophosphate;Quaternary ammonium salts;Fluoride;Regeneration
    日期: 2022-01
    上傳時間: 2022-03-12 12:11:14 (UTC+8)
    摘要: Mesoporous zirconium pyrophosphate(ZPP) adsorbents were synthesized, with six quaternary ammonium salts (Quats), namely, Octyltrimethylammonium (OTMA, C8), Decyltrimethylammonium (DCTMA, C10), Dodecyltrimethylammonium (DDTMA, C12), Tetradecyltrimethylammonium (TDTMA, C14), Hexadecyltrimethylammoium (HDTMA, C16), and Octadecyltrimethylammonium (ODTMA, C18), as template for studying fluoride adsorption. Quats of long carbon chain length significantly affected the specific surface area of mesoporous ZPP adsorbents. C18-ZPP exhibited the largest specific surface area and fluoride adsorption density. Fluoride adsorption density remained constant at pH < 7.0, decreased sharply as pH increased beyond 7, and became minimal at pH > 10–11. Langmuir adsorption isotherm described fluoride adsorption characteristics well. Results showed that mesoporous ZPP synthesized with C18 at Zr to C18 molar ratio of 0.57:1 exhibited the best fluoride adsorption capacity (32 mmol/g) among all ZPP adsorbents prepared at various Zr to C18 molar ratios. C18-ZPP exhibited two-fold increase in fluoride removal capacity compared to plain ZPP. The reusability of C18-ZPP was assessed by running fluoride removal at least five cycles. Mesoporous ZPP is a promising adsorbent for fluoride removal from water with much enhanced adsorption capacity, regenerability, and reusability.
    關聯: Chemical Engineering Journal 427, 132034
    DOI: 10.1016/j.cej.2021.132034
    顯示於類別:[化學工程與材料工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML32檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋