English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64178/96951 (66%)
造访人次 : 11121595      在线人数 : 22988
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/122522


    题名: Hierarchical Bayesian modeling and randomized response method for inferring the sensitive-nature proportion
    作者: Xin, H;Zhu, J;Tsai, Tzong-Ru
    关键词: Bayesian estimation;Beta-Binominal model;maximum likelihood estimation;respondent protection;randomized response
    日期: 2021-10-07
    上传时间: 2022-03-11 12:12:36 (UTC+8)
    摘要: In this study, a new three-statement randomized response estimation method is proposed to improve the drawback that the maximum likelihood estimation method could generate a negative value to estimate the sensitive-nature proportion (SNP) when its true value is small. The Bayes estimator of the SNP is obtained via using a hierarchical Bayesian modeling procedure. Moreover, a hybrid algorithm using Gibbs sampling in Metropolis–Hastings algorithms is used to obtain the Bayes estimator of the SNP. The highest posterior density interval of the SNP is obtained based on the empirical distribution of Markov chains. We use the term 3RR-HB to denote the proposed method here. Monte Carlo simulations show that the quality of 3RR-HB procedure is good and that it can improve the drawback of the maximum likelihood estimation method. The proposed 3RR-HB procedure is simple for use. An example regarding the homosexual proportion of college freshmen is used for illustration.
    關聯: Mathematics 9(19), 2518
    DOI: 10.3390/math9192518
    显示于类别:[統計學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    Hierarchical Bayesian modeling and randomized response method for inferring the sensitive-nature proportion.pdf319KbAdobe PDF104检视/开启
    index.html0KbHTML113检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈