English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62679/95552 (66%)
Visitors : 3302159      Online Users : 232
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/122474


    Title: Design and Validation of an Augmented Reality Teaching System for Primary Logic Programming Education
    Authors: Tsai, Chi-Yi;Lai, Yu-Cheng
    Keywords: augmented reality;logic programming teaching;learning effectiveness;learning motivation;analysis of covariance
    Date: 2022-01-05
    Issue Date: 2022-03-10 12:12:15 (UTC+8)
    Publisher: MDPI
    Abstract: Programming is a skill that requires high levels of logical thinking and problem-solving abilities. According to the Curriculum Guidelines for the 12-Year Basic Education currently implemented in Taiwan, programming has been included in the mandatory courses of middle and high schools. Nevertheless, the guidelines simply recommend that elementary schools conduct fundamental instructions in related fields during alternative learning periods. This may result in the problem of a rough transition in programming learning for middle school freshmen. To alleviate this problem, this study proposes an augmented reality (AR) logic programming teaching system that combines AR technologies and game-based teaching material designs on the basis of the fundamental concepts for seventh-grade structured programming. This system can serve as an articulation curriculum for logic programming in primary education. Thus, students are able to develop basic programming logic concepts through AR technologies by performing simple command programming. This study conducted an experiment using the factor-based quasi-experimental research design and questionnaire survey method, with 42 fifth and sixth graders enrolled as the experimental subjects. The statistical analysis showed the following results: In terms of learning effectiveness, both AR-based and traditional learning groups displayed a significant performance. However, of the two groups, the former achieved more significant effectiveness in the posttest results. Regarding learning motivation, according to the evaluation results of the Attention, Relevance, Confidence, and Satisfaction (ARCS) motivation model, the AR-based learning group manifested significantly higher levels of learning motivation than the traditional learning group, with particularly significant differences observed in the dimension of Attention. Therefore, the experimental results validate that the proposed AR-based logic programming teaching system has significant positive effects on enhancing students’ learning effectiveness and motivation.
    Relation: Sensors 22(1), 389 (17 pages)
    DOI: 10.3390/s22010389
    Appears in Collections:[Graduate Institute & Department of Electrical Engineering] Journal Article

    Files in This Item:

    File Description SizeFormat
    Design and Validation of an Augmented Reality Teaching System for Primary Logic Programming Education.pdf2812KbAdobe PDF47View/Open
    index.html0KbHTML53View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback