English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 62830/95882 (66%)
造访人次 : 4048127      在线人数 : 586
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/122472


    题名: Mapless LiDAR Navigation Control of Wheeled Mobile Robots Based on Deep Imitation Learning
    作者: Tsai, Chi-Yi;Nisar, Humaira;Hu, Yu-Chen
    关键词: Deep imitation learning;end-to-end learning;mapless LiDAR navigation control;behavior cloning
    日期: 2021-08-30
    上传时间: 2022-03-10 12:12:11 (UTC+8)
    出版者: IEEE
    摘要: This paper addresses the problems related to the mapless navigation control of wheeled mobile robots based on deep learning technology. The traditional navigation control framework is based on a global map of the environment, and its navigation performance depends on the quality of the global map. In this paper, we proposes a mapless Light Detection and Ranging (LiDAR) navigation control method for wheeled mobile robots based on deep imitation learning. The proposed method is a data-driven control method that directly uses LiDAR sensors and relative target position for mobile robot navigation control. A deep convolutional neural network (CNN) model is proposed to predict motion control commands of the mobile robot without the requirement of the global map to achieve navigation control of the mobile robot in unknown environments. While collecting the training dataset, we manipulated the mobile robot to avoid obstacles through manual control and recorded the raw data of the LiDAR sensor, the relative target position, and the corresponding motion control commands. Next, we applied a data augmentation method on the recorded samples to increase the number of training samples in the dataset. In the network model design, the proposed CNN model consists of a LiDAR CNN module to extract LiDAR features and a motion prediction module to predict the motion behavior of the robot. In the model training phase, the proposed CNN model learns the mapping between the input sensor data and the desired motion behavior through end-to-end imitation learning. Experimental results show that the proposed mapless LiDAR navigation control method can safely navigate the mobile robot in four unseen environments with an average success rate of 75%. Therefore, the proposed mapless LiDAR navigation control system is effective for robot navigation control in an unknown environment without the global map.
    關聯: IEEE Access 9, p.117527-117541
    DOI: 10.1109/ACCESS.2021.3107041
    显示于类别:[電機工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML28检视/开启
    Mapless LiDAR Navigation Control of Wheeled Mobile Robots Based on Deep Imitation Learning.pdf2846KbAdobe PDF52检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈