淡江大學機構典藏:Item 987654321/122456
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62822/95882 (66%)
Visitors : 4017098      Online Users : 560
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/122456


    Title: Applying the Tremaine-Weinberg Method to Nearby Galaxies: Stellar-mass-based Pattern Speeds and Comparisons with ISM Kinematics
    Authors: Williams, Thomas G.;Schinnerer, Eva;Emsellem, Eric;Meidt, Sharon;Querejeta, Miguel;Belfiore, Francesco;Bešlić, Ivana;Bigiel, Frank;Chevance, Mélanie;Dale, Daniel A.;Glover, Simon C. O.;Grasha, Kathryn;Klessen, Ralf S.;Kruijssen, J. M. Diederik;Leroy, Adam K.;Pan, Hsi-An;Pety, Jérôme;Pessa, Ismael;Rosolowsky, Erik;Saito, Toshiki;Santoro, Francesco;Schruba, Andreas;Sormani, Mattia C.;Sun, Jiayi;Watkins, Elizabeth J.
    Date: 2021-03-15
    Issue Date: 2022-03-10 12:10:49 (UTC+8)
    Abstract: We apply the Tremaine–Weinberg method to 19 nearby galaxies using stellar mass surface densities and velocities derived from the PHANGS-MUSE survey, to calculate (primarily bar) pattern speeds (ΩP). After quality checks, we find that around half (10) of these stellar-mass-based measurements are reliable. For those galaxies, we find good agreement between our results and previously published pattern speeds, and we use rotation curves to calculate major resonance locations (corotation radii and Lindblad resonances). We also compare these stellar-mass-derived pattern speeds with Hα (from MUSE) and CO(J = 2 − 1) emission from the PHANGS-ALMA survey. We find that in the case of these clumpy interstellar medium (ISM) tracers, this method erroneously gives a signal that is simply the angular frequency at a representative radius set by the distribution of these clumps (Ωclump), and that this Ωclump is significantly different from ΩP (∼20% in the case of Hα, and ∼50% in the case of CO). Thus, we conclude that it is inadvisable to use "pattern speeds" derived from ISM kinematics. Finally, we compare our derived pattern speeds and corotation radii, along with bar properties, to the global parameters of these galaxies. Consistent with previous studies, we find that galaxies with a later Hubble type have a larger ratio of corotation radius to bar length, more molecular-gas-rich galaxies have higher ΩP, and more bulge-dominated galaxies have lower ΩP. Unlike earlier works, however, there are no clear trends between the bar strength and ΩP, nor between the total stellar mass surface density and the pattern speed.
    Relation: The Astronomical Journal 161(4), 185 (21 pages)
    DOI: 10.3847/1538-3881/abe243
    Appears in Collections:[Graduate Institute & Department of Physics] Journal Article

    Files in This Item:

    File Description SizeFormat
    Applying the Tremaine-Weinberg Method to Nearby Galaxies Stellar-mass-based Pattern Speeds and Comparisons with ISM Kinematics.pdf1930KbAdobe PDF2View/Open
    index.html0KbHTML38View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback