English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 60868/93650 (65%)
造訪人次 : 1147647      線上人數 : 20
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/122382

    題名: A Machine Learning Approach for Spatial Mapping of the Health Risk Associated with Arsenic-Contaminated Groundwater in Taiwan’s Lanyang Plain
    作者: Liang, C.-P.;Sun, C.-C.;Suk, H.;Wang, S.-W.;Chen, J.-S.
    關鍵詞: back-propagation neural network;ordinary kriging;groundwater arsenic contamination;hazard quotient;target risk
    日期: 2021-10-29
    上傳時間: 2022-03-04 12:16:36 (UTC+8)
    摘要: Groundwater resources are abundant and widely used in Taiwan’s Lanyang Plain. However, in some places the groundwater arsenic (As) concentrations far exceed the World Health Organization’s standards for drinking water quality. Measurements of the As concentrations in groundwater show considerable spatial variability, which means that the associated risk to human health would also vary from region to region. This study aims to adapt a back-propagation neural network (BPNN) method to carry out more reliable spatial mapping of the As concentrations in the groundwater for comparison with the geostatistical ordinary kriging (OK) method results. Cross validation is performed to evaluate the prediction performance by dividing the As monitoring data into three sets. The cross-validation results show that the average determination coefficients (R2) for the As concentrations obtained with BPNN and OK are 0.55 and 0.49, whereas the average root mean square errors (RMSE) are 0.49 and 0.54, respectively. Given the better prediction performance of the BPNN, it is recommended as a more reliable tool for the spatial mapping of the groundwater As concentration. Subsequently, the As concentrations estimated obtained using the BPNN are applied to develop a spatial map illustrating the risk to human health associated with the ingestion of As-containing groundwater based on the noncarcinogenic hazard quotient (HQ) and carcinogenic target risk (TR) standards established by the U.S. Environmental Protection Agency. Such maps can be used to demarcate the areas where residents are at higher risk due to the ingestion of As-containing groundwater, and prioritize the areas where more intensive monitoring of groundwater quality is required. The spatial mapping of As concentrations from the BPNN was also used to demarcate the regions where the groundwater is suitable for farmland and fishponds based on the water quality standards for As for irrigation and aquaculture.
    關聯: International Journal of Environmental Research and Public Health 18(21), 11385
    DOI: 10.3390/ijerph182111385
    顯示於類別:[水資源及環境工程學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    A Machine Learning Approach for Spatial Mapping of the Health Risk Associated with Arsenic-Contaminated Groundwater in Taiwan’s Lanyang Plain.pdf3414KbAdobe PDF7檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋