淡江大學機構典藏:Item 987654321/122344
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64198/96992 (66%)
造訪人次 : 7966554      線上人數 : 9302
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/122344


    題名: Quantile function regression analysis for interval censored data, with application to salary survey data
    作者: CY, Hsu;CC, Wen;YH, Chen
    關鍵詞: Goodness-of-fit test;Interval censoring;Parametric model;Quantile regression;Truncation
    日期: 2021-03-22
    上傳時間: 2022-03-04 12:11:22 (UTC+8)
    摘要: This study aims at regression analysis for quantile functions where the quantile regression coefficients are treated as functions over a continuum of quantile levels. We propose a general inference procedure for quantile regression coefficient functions with interval-censored outcome data. The modeling framework follows a recent proposal using a set of parametric basis functions to approximate the quantile regression coefficient functions. The new proposal can accommodate outcome data subject to general types of interval censoring, including fixed, random, and partly interval censoring. The large sample theory for the proposed estimator is established for inference, and a goodness-of-fit testing procedure is developed to guide the choice of the basis functions. We apply the proposed methodology to a survey dataset on monthly salaries of Taiwan workers, where only parts of the salary data are exact while the others are interval-censored according to the salary intervals prespecified in the survey questionnaire.
    關聯: Japanese Journal of Statistics and Data Science 4, p.999-1018
    DOI: 10.1007/s42081-021-00113-3
    顯示於類別:[應用數學與數據科學學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML96檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋