淡江大學機構典藏:Item 987654321/122344
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64198/96992 (66%)
造访人次 : 7929643      在线人数 : 2481
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/122344


    题名: Quantile function regression analysis for interval censored data, with application to salary survey data
    作者: CY, Hsu;CC, Wen;YH, Chen
    关键词: Goodness-of-fit test;Interval censoring;Parametric model;Quantile regression;Truncation
    日期: 2021-03-22
    上传时间: 2022-03-04 12:11:22 (UTC+8)
    摘要: This study aims at regression analysis for quantile functions where the quantile regression coefficients are treated as functions over a continuum of quantile levels. We propose a general inference procedure for quantile regression coefficient functions with interval-censored outcome data. The modeling framework follows a recent proposal using a set of parametric basis functions to approximate the quantile regression coefficient functions. The new proposal can accommodate outcome data subject to general types of interval censoring, including fixed, random, and partly interval censoring. The large sample theory for the proposed estimator is established for inference, and a goodness-of-fit testing procedure is developed to guide the choice of the basis functions. We apply the proposed methodology to a survey dataset on monthly salaries of Taiwan workers, where only parts of the salary data are exact while the others are interval-censored according to the salary intervals prespecified in the survey questionnaire.
    關聯: Japanese Journal of Statistics and Data Science 4, p.999-1018
    DOI: 10.1007/s42081-021-00113-3
    显示于类别:[應用數學與數據科學學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML93检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈