淡江大學機構典藏:Item 987654321/122298
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64187/96966 (66%)
造访人次 : 11335699      在线人数 : 160
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/122298


    题名: Applications of Deep Learning in GIS: Spatiotemporal data mining and forecasting
    作者: Wuthikulphkdi, Supasin;Tsai, Yihjia
    关键词: Data Mining;Deep learning;GIS;Geo-InformationSystem;Spatiotemporal Data mining
    日期: 2022-01-20
    上传时间: 2022-02-26 12:13:59 (UTC+8)
    摘要: In this paper, we performed papersurvey of deep learning algorithms andmodels in ST-data mining & forecasting.Leading to experiments, we asked ourselves2 questions: 1. There are several STDM-DLmodels, but how well can they learn, andperform forecasting? And 2. If we have acustom dataset, with its data structurevisualised, which model to be learned fromit? We answered these in 2 experiments, thefirst one was that we run the state-of-the artSTDM-DL models and compare theirmetrics. Majorly, the selected models,trained by either METR-LA or PEMS-BAYdataset, predicted the traffic in both spatialand temporal domains. In the second one,we had a fire-call record dataset of the NewTaipei City (NTPC-Fire 2015-17), andimplemented some simple, yet familiarmodels such as Autoencoders and GANs toreconstruct (predict) a rasterised heatmapand LSTM-RNNs, FBProphet and ARIMAin the temporal models to compareperformance in time series forecasting ofdaily, and weekly, incident frequency. In ourfirst experiment, we found out that somestate-of-the-art models, like ST-METANET,STGCN, and Spacetimeformer, had asimilar metrics, with all of them second onlyto the multi-LSTM. And found out that the“Deepforecast Multi-LSTM” is the besttraffic prediction model to date. In oursecond experiment, surprisingly, for oursmall dataset, the FBProphet modeloutperformed even our best LSTM. And ourbest spatial model to reconstruct (predict) araster heatmap was the VariationalAutoencoder (VAE). Given to thesefindings, we have known how analyse thedata via visualization, and implement correctmodels and architectures for each domain inSTDM task. Finally, we will continue todiscover the method to solve environmentalissues, and provide recommendations forfuture subtests, to point out the futureresearch directions for this fast-growingresearch field.
    显示于类别:[資訊工程學系暨研究所] 研究報告

    文件中的档案:

    没有与此文件相关的档案.

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈