English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64178/96951 (66%)
Visitors : 11065863      Online Users : 23275
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/122298


    Title: Applications of Deep Learning in GIS: Spatiotemporal data mining and forecasting
    Authors: Wuthikulphkdi, Supasin;Tsai, Yihjia
    Keywords: Data Mining;Deep learning;GIS;Geo-InformationSystem;Spatiotemporal Data mining
    Date: 2022-01-20
    Issue Date: 2022-02-26 12:13:59 (UTC+8)
    Abstract: In this paper, we performed papersurvey of deep learning algorithms andmodels in ST-data mining & forecasting.Leading to experiments, we asked ourselves2 questions: 1. There are several STDM-DLmodels, but how well can they learn, andperform forecasting? And 2. If we have acustom dataset, with its data structurevisualised, which model to be learned fromit? We answered these in 2 experiments, thefirst one was that we run the state-of-the artSTDM-DL models and compare theirmetrics. Majorly, the selected models,trained by either METR-LA or PEMS-BAYdataset, predicted the traffic in both spatialand temporal domains. In the second one,we had a fire-call record dataset of the NewTaipei City (NTPC-Fire 2015-17), andimplemented some simple, yet familiarmodels such as Autoencoders and GANs toreconstruct (predict) a rasterised heatmapand LSTM-RNNs, FBProphet and ARIMAin the temporal models to compareperformance in time series forecasting ofdaily, and weekly, incident frequency. In ourfirst experiment, we found out that somestate-of-the-art models, like ST-METANET,STGCN, and Spacetimeformer, had asimilar metrics, with all of them second onlyto the multi-LSTM. And found out that the“Deepforecast Multi-LSTM” is the besttraffic prediction model to date. In oursecond experiment, surprisingly, for oursmall dataset, the FBProphet modeloutperformed even our best LSTM. And ourbest spatial model to reconstruct (predict) araster heatmap was the VariationalAutoencoder (VAE). Given to thesefindings, we have known how analyse thedata via visualization, and implement correctmodels and architectures for each domain inSTDM task. Finally, we will continue todiscover the method to solve environmentalissues, and provide recommendations forfuture subtests, to point out the futureresearch directions for this fast-growingresearch field.
    Appears in Collections:[Graduate Institute & Department of Computer Science and Information Engineering] Research Paper

    Files in This Item:

    There are no files associated with this item.

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback