English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 10088644      線上人數 : 20100
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/122202


    題名: A Social Media Mining and Ensemble Learning Model: Application to Luxury and Fast Fashion Brands
    作者: Chen, Yulin
    關鍵詞: fashion brands;luxury brands;masstige;key image cues;social media mining;ensemble earning
    日期: 2021-03-31
    上傳時間: 2022-02-23 12:12:35 (UTC+8)
    摘要: This research proposes a framework for the fashion brand community to explore public participation behaviors triggered by brand information and to understand the importance of key image cues and brand positioning. In addition, it reviews different participation responses (likes, comments, and shares) to build systematic image and theme modules that detail planning requirements for community information. The sample includes luxury fashion brands (Chanel, Hermès, and Louis Vuitton) and fast fashion brands (Adidas, Nike, and Zara). Using a web crawler, a total of 21,670 posts made from 2011 to 2019 are obtained. A fashion brand image model is constructed to determine key image cues in posts by each brand. Drawing on the findings of the ensemble analysis, this research divides cues used by the six major fashion brands into two modules, image cue module and image and theme cue module, to understand participation responses in the form of likes, comments, and shares. The results of the systematic image and theme module serve as a critical reference for admins exploring the characteristics of public participation for each brand and the main factors motivating public participation.
    關聯: Information 12(4), 149
    DOI: 10.3390/info12040149
    顯示於類別:[大眾傳播學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML295檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋