English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 10216915      線上人數 : 19764
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/122201


    題名: Using Machine Learning to Compare the Information Needs and Interactions of Facebook: Taking Six Retail Brands as an Example
    作者: Chen, Yulin
    關鍵詞: social media mining;ensemble learning;information cues;behavior trend analyses
    日期: 2021-12-17
    上傳時間: 2022-02-23 12:12:32 (UTC+8)
    摘要: This study explores the interactive characteristics of the public, referencing existing data mining methods. This research attempts to develop a community data mining and integration technology to investigate the trends of global retail chain brands. Using social media mining and ensemble learning, it examines key image cues to highlight the various reasons motivating participation by fans. Further, it expands the discussion on image and marketing cues to explore how various social brands induce public participation and the evaluation of information efficiency. This study integrates random decision forests, extreme gradient boost, and adaboost for statistical verification. From 1 January 2011 to 31 December 2019, the studied brands published a total of 25,538 posts. The study combines community information and participation in its research framework. The samples are divided into three categories: retail food brand, retail home improvement brand, and retail warehouse club brand. This research draws on brand image and information cue theory to design the theoretical framework, and then uses behavior response factors for the theoretical integration. This study contributes a model that classifies brand community posts and mines related data to analyze public needs and preferences. More specifically, it proposes a framework with supervised and ensemble learning to classify information users′ behavioral characteristics.
    關聯: Information 12(12), 526
    DOI: 10.3390/info12120526
    顯示於類別:[大眾傳播學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML179檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋