English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 62822/95882 (66%)
造访人次 : 4013483      在线人数 : 903
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/122196


    题名: Conjugated mass transfer of CO2 absorption through concentric circular gas-liquid membrane contactors
    作者: Ho, C.-D.;Chang, H.;Chen, Y.-H.;Lim, J.-W.;Liou, J.-W.
    关键词: CO2 absorption;MEA absorbent;absorption rate;membrane contactor;conjugated graetz problem;concentric circular module
    日期: 2021-09-03
    上传时间: 2022-02-23 12:11:50 (UTC+8)
    摘要: A new design of gas absorption that winds the permeable membrane onto an inner concentric tube to conduct a concentric circular gas–liquid membrane module has been studied theoretically in the fully developed region. An analytical formulation, referred to as conjugated Graetz problems, is developed to predict the concentration distribution and Sherwood numbers for the absorbent fluid flowing in the shell side and CO2/N2 gas mixture flowing in the tube side under various designs and operating parameters. The analytical solutions to the CO2 absorption efficiency were developed by using a two-dimensional mathematical modeling, and the resultant conjugated partial differential equations were solved analytically using the method of separation variables and eigen-function expansion in terms of power series. The predictions of CO2 absorption rate by using Monoethanolamide (MEA) solution in concentric circular membrane contactors under both concurrent- and countercurrent-flow operations are developed theoretically and confirmed with the experimental results. Consistency in both a good qualitative and quantitative sense is achieved between the theoretical predictions and experimental results. The advantage of the present mathematical treatment provides a concise expression for the chemical absorption of CO2 by MEA solution to calculate the absorption rate, absorption efficiency, and average Sherwood number. The concentration profiles with the mass-transfer Graetz number, inlet CO2 concentration, and both gas feed and absorbent flow rates are also emphasized. Both theoretical predictions and experimental results show that the device performance of the countercurrent-flow operation is better than that of the concurrent-flow device operation. The availability of such simplified expressions of the absorption rate and averaged Sherwood as developed directly from the analytical solutions is the value of the present study.
    關聯: Processes 9(9), 1580
    DOI: 10.3390/pr9091580
    显示于类别:[化學工程與材料工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML29检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈