淡江大學機構典藏:Item 987654321/121881
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 60861/93527 (65%)
造访人次 : 1496613      在线人数 : 19
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/121881


    题名: SOINN-Based Abnormal Trajectory Detection for Efficient Video Condensation
    作者: Fahn, Chin-Shyurng;Kao, Chang-Yi;Wu, Meng-Luen;Chueh, Hao-En
    关键词: Surveillance systems;video condensation;SOINN;moving trajectory;abnormal detection
    日期: 2022-01-04
    上传时间: 2022-01-06 12:12:34 (UTC+8)
    出版者: Springer
    摘要: With the evolution of video surveillance systems, the requirement of video storage grows rapidly; in addition, safe guards and forensic officers spend a great deal of time observing surveillance videos to find abnormal events. As most of the scene in the surveillance video are redundant and contains no information needs attention, we propose a video condensation method to summarize the abnormal events in the video by rearranging the moving trajectory and sort them by the degree of anomaly. Our goal is to improve the condensation rate to reduce more storage size, and increase the accuracy in abnormal detection. As the trajectory feature is the key to both goals, in this paper, a new method for feature extraction of moving object trajectory is proposed, and we use the SOINN (Self-Organizing Incremental Neural Network) method to accomplish a high accuracy abnormal detection. In the results, our method is able to shirk the video size to 10% storage size of the original video, and achieves 95% accuracy of abnormal event detection, which shows our method is useful and applicable to the surveillance industry.
    關聯: Computer Systems Science and Engineering 42(2), p.451-463
    DOI: 10.32604/csse.2022.022368
    显示于类别:[資訊工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML48检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈