English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 9597406      線上人數 : 18214
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/121654


    題名: Distillate flux enhancement of direct contact membrane distillation modules with inserting cross-diagonal carbon-fiber spacers
    作者: Ho, Chii-Dong;Chen, Luke;Lim, Jun-Wei;Lin, Po-Hung;Lu, Pin-Tsen
    關鍵詞: hydrodynamic angles;temperature polarization effect;carbon-fiber spacers;pure water productivity
    日期: 2021-12-09
    上傳時間: 2021-12-15 17:04:06 (UTC+8)
    出版者: MDPI
    摘要: A new design of direct-contact membrane distillation (DCMD) modules with cross-diagonal carbon-fiber spacers of various hydrodynamic angles in flow channels to promote turbulence intensity was proposed to enhance pure water productivity. Attempts to reduce the temperature polarization coefficient were achieved by inserting cross-diagonal carbon-fiber spacers in channels, which create wakes and eddies in both heat and mass transfer behaviors to enhance the permeate flux enhancement. A simplified equation was formulated to obtain the theoretical predictions of heat transfer coefficients in the current DCMD device. The permeate fluxes and temperature distributions of both hot and cold feed streams are represented graphically with the inlet volumetric flow rate and inlet temperature of the hot saline feed stream as parameters. The higher distillate flux of countercurrent-flow operations for saline water desalination was accomplished as compared to the concurrent-flow operations of various hydrodynamic angles. The results show that the agreement between the theoretical predictions and experimental results is reasonably good. The effects of countercurrent-flow operations and inserting carbon fiber spacers have confirmed technical feasibility and device performance enhancement of up to 45%. The influences of operating and design parameters on the pure water productivity with the expense of energy consumption are also discussed.
    關聯: Membranes 11(12), 973
    DOI: 10.3390/membranes11120973
    顯示於類別:[化學工程與材料工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML243檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋