淡江大學機構典藏:Item 987654321/121649
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64176/96941 (66%)
造訪人次 : 9108954      線上人數 : 11485
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/121649


    題名: Pursuing Efficient Data Stream Mining by Removing Long Patterns from Summaries
    作者: Po-Jen Chuang;Yun-Sheng Tu
    關鍵詞: data streams;frequent pattern mining;pattern summary;length skip;performance evaluation
    日期: 2021-12-07
    上傳時間: 2021-12-15 17:02:26 (UTC+8)
    出版者: Inderscience Publishers
    摘要: Frequent pattern mining is a useful data mining technique. It can help in digging out frequently used patterns from the massive internet data streams for significant applications and analyses. To uplift the mining accuracy and reduce the needed processing time, this paper proposes a new approach that is able to remove less used long patterns from the pattern summary to preserve space for more frequently used short patterns, in order to enhance the performance of existing frequent pattern mining algorithms. Extensive simulation runs are carried out to check the performance of the proposed approach. The results show that our approach can strengthen the mining performance by effectively bringing down the required run time and substantially increasing the mining accuracy.
    關聯: International Journal of Data Mining, Modelling and Management 13(4), p.388-409
    DOI: 10.1504/IJDMMM.2021.119630
    顯示於類別:[電機工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML79檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋