淡江大學機構典藏:Item 987654321/121649
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8482954      在线人数 : 8102
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/121649


    题名: Pursuing Efficient Data Stream Mining by Removing Long Patterns from Summaries
    作者: Po-Jen Chuang;Yun-Sheng Tu
    关键词: data streams;frequent pattern mining;pattern summary;length skip;performance evaluation
    日期: 2021-12-07
    上传时间: 2021-12-15 17:02:26 (UTC+8)
    出版者: Inderscience Publishers
    摘要: Frequent pattern mining is a useful data mining technique. It can help in digging out frequently used patterns from the massive internet data streams for significant applications and analyses. To uplift the mining accuracy and reduce the needed processing time, this paper proposes a new approach that is able to remove less used long patterns from the pattern summary to preserve space for more frequently used short patterns, in order to enhance the performance of existing frequent pattern mining algorithms. Extensive simulation runs are carried out to check the performance of the proposed approach. The results show that our approach can strengthen the mining performance by effectively bringing down the required run time and substantially increasing the mining accuracy.
    關聯: International Journal of Data Mining, Modelling and Management 13(4), p.388-409
    DOI: 10.1504/IJDMMM.2021.119630
    显示于类别:[電機工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML79检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈