淡江大學機構典藏:Item 987654321/121629
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64178/96951 (66%)
造访人次 : 9895747      在线人数 : 18803
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/121629


    题名: Cross‑platform comparison of framed topics in Twitter and Weibo: machine learning approaches to social media text mining
    作者: Yang, Yi;Hsu, Jia-Huey;Lofgren, Karl;Cho, Wonhyuk
    关键词: Social media;Latent Dirichlet Allocation;text mining;machine learning;algorithm;Twitter;Weibo;social network analysis
    日期: 2021-08-14
    上传时间: 2021-11-22 12:10:19 (UTC+8)
    出版者: Springer
    摘要: While the salience of social media platforms on modern interactive communication between diverse social actors has been demonstrated, less academic attention has been paid to comparisons between framed topics and user interactions across social media platforms, such as Twitter and Weibo. This article suggests text mining and natural language processing tools for cross-platform comparative social media studies, based on Latent Dirichlet Allocation (LDA) and social network analysis. This study illustrates how the suggested topic models and data processing algorithms can be applied to a real-life example (U.S.-China trade war discourse on social media), and experimented the methods on social media text mining data, revealing differences between user interactions on Twitter, predominantly ‘Western,’ and Weibo, largely representing Chinese-speaking users. We discuss the strengths and weaknesses of the suggested machine learning algorithms for comparative social media studies.
    關聯: Social Network Analysis and Mining 11, 75
    DOI: 10.1007/s13278-021-00772-w
    显示于类别:[國際企業學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML112检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈