淡江大學機構典藏:Item 987654321/121624
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 62830/95882 (66%)
造访人次 : 4081957      在线人数 : 485
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/121624


    题名: Flutter speed prediction by using deep learning
    作者: Wang, Yi-Ren;Wang, Yi-Jyun
    关键词: Flutter analysis;deep learning;deep neural network;long short-term memory
    日期: 2021-11-18
    上传时间: 2021-11-19 12:10:20 (UTC+8)
    出版者: SAGE Journals
    摘要: Deep learning technology has been widely used in various field in recent years. This study intends to use deep learning algorithms to analyze the aeroelastic phenomenon and compare the differences between Deep Neural Network (DNN) and Long Short-term Memory (LSTM) applied on the flutter speed prediction. In this present work, DNN and LSTM are used to address complex aeroelastic systems by superimposing multi-layer Artificial Neural Network. Under such an architecture, the neurons in neural network can extract features from various flight data. Instead of time-consuming high-fidelity computational fluid dynamics (CFD) method, this study uses the K method to build the aeroelastic flutter speed big data for different flight conditions. The flutter speeds for various flight conditions are predicted by the deep learning methods and verified by the K method. The detailed physical meaning of aerodynamics and aeroelasticity of the prediction results are studied. The LSTM model has a cyclic architecture, which enables it to store information and update it with the latest information at the same time. Although the training of the model is more time-consuming than DNN, this method can increase the memory space. The results of this work show that the LSTM model established in this study can provide more accurate flutter speed prediction than the DNN algorithm.
    關聯: Advances in Mechanical Engineering 13(11)
    DOI: 10.1177/16878140211062275
    显示于类别:[航空太空工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML100检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈