English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62805/95882 (66%)
Visitors : 3910497      Online Users : 345
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/121614


    Title: AgCl-based selective laser melting photocatalytic module for degradation of azo dye and E. coli
    Authors: Lee, Po-ching
    Keywords: Silver chloride;Photocatalyst;SLM;Degradation;Disinfection
    Date: 2021-05-25
    Issue Date: 2021-11-17 12:10:31 (UTC+8)
    Publisher: Springer-Verlag London Ltd
    Abstract: An innovative 3D printing procedure for producing a highly porous AgCl/Ag0 photocatalyst was developed and tested for its stability and degradability of azo dye (Orange II) and bacteria (Escherichia coli). The AgCl/Ag0 photocatalytic module was fabricated through selective laser melting (SLM), in which the AgCl powder was stacked in a thin layer (approximate average thickness of 30 μm) on a platform and melted by a high-power laser beam layer by layer until the 3D module was created. The melting process may cause AgCl to transform into other compounds, which may, in turn, reduce the activity of photocatalysts; for this reason, the optimal laser power and scanning speed for constructing an SLM module were investigated; they were determined to be 26 W and at 385 mm/s. This photocatalytic module effectively degraded azo dye and sterilized E. coli. The degradation of azo dye was performed under visible and UV light irradiation, and the degradation kinetics was first-order reactions. Furthermore, the azo dye degradability (95%) of this photocatalyst module persisted for five cycles in our experiment. The sterilization of E. coli was accomplished within a 135-min test, and the degradation kinetics was also first-order reactions. The photocatalytic module fabricated through SLM not only exhibited the ability to degrade contaminants in the water but also had durability and reliability after repeated use.
    Relation: The International Journal of Advanced Manufacturing Technology 115(4), p.1127-1138
    DOI: 10.1007/s00170-021-07119-x
    Appears in Collections:[水資源及環境工程學系暨研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    AgCl-based selective laser melting photocatalytic module for degradation of azo dye and E. coli.pdf3522KbAdobe PDF2View/Open
    index.html0KbHTML73View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback