淡江大學機構典藏:Item 987654321/121538
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64176/96941 (66%)
造访人次 : 9125396      在线人数 : 14411
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/121538


    题名: A Self-guided Genetic Algorithm for Flowshop Scheduling problems
    作者: Chen, Shih-Shin;Chang, Pei-Chann;Zhang, Qingfu
    关键词: Genetic algorithms;Genetic mutations;Evolutionary computation;Sampling methods;Electronic mail;Scheduling algorithm;Minimization methods;Predictive models;Biological cells;Character generation
    日期: 2009-05-29
    上传时间: 2021-10-21 12:11:48 (UTC+8)
    摘要: This paper proposed self-guided genetic algorithm, which is one of the algorithms in the category of evolutionary algorithm based on probabilistic models (EAPM), to solve strong NP-hard flowshop scheduling problems with the minimization of makespan. Most EAPM research explicitly used the probabilistic model from the parental distribution, then generated solutions by sampling from the probabilistic model without using genetic operators. Although EAPM is promising in solving different kinds of problems, self-guided GA doesn't intend to generate solution by the probabilistic model directly because the time complexity is high when we solve combinatorial problems, particularly the sequencing ones. As a result, the probabilistic model serves as a fitness surrogate which estimates the fitness of the new solution beforehand in this research. So the probabilistic model is used to guide the evolutionary process of crossover and mutation. This research studied the flowshop scheduling problems and the corresponding experiment were conducted. From the results, it shows that the self-guided GA outperformed other algorithms significantly. In addition, self-guided GA works more efficiently than previous EAPM. As a result, self-guided GA is promising in solving the flowshop scheduling problems.
    DOI: 10.1109/CEC.2009.4982983
    显示于类别:[資訊工程學系暨研究所] 會議論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML80检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈