淡江大學機構典藏:Item 987654321/121537
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64178/96951 (66%)
造访人次 : 10884278      在线人数 : 21604
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/121537


    题名: Development of Effective Estimation of Distribution Algorithms for Scheduling Problems
    作者: Chen, Shih-hsin;Chen, Min-chih;Chang, Pei-chann;Qingfu, Zhang Yuh-min;Chen, Shih-hsin;Chen, Min-chih;Chang, Pei-chann;Zhang, Qingfu;Chen, Yuh-min
    关键词: effective estimation;distribution algorithm;adaptive ea;different computational time;effective eda algorithm;premature convergence;ea gga outperform acga;convergence speed analysis;population diversity;major idea;single machine;diversified solution heuristic method;probabilistic model;ea g-ga;just-in-time scheduling environment;earliness tardiness cost;experimental result;important linkage
    日期: 2009-08-10
    上传时间: 2021-10-21 12:11:46 (UTC+8)
    摘要: Abstract The purpose of this paper is to establish some guidelines for designing effective Estimation of Distribution Algorithms (EDAs). These guidelines aim at balancing intensification and diversification in EDAs. Most EDAs are able to maintain some important linkages among variables. This advantage, however, may lead to the premature convergence of EDAs since the probabilistic models no longer generating diversified solutions. In addition, overfitting might occure in EDAs. This paper proposes guidelines based on the convergence speed analysis of EDAs under different computational times for designing effective EDA algorithms. The major ideas are to increase the population diversity gradually and by hybridizing EDAs with other meta-heuristics. Using these guidelines, this research further proposes an adaptive EA/G and EA/G-GA to improve the performance of EA/G. The proposed algorithm solved the single machine scheduling problems with earliness/tardiness cost in a just-in-time scheduling environment. The experimental results indicated that the Adaptive EA/G and EA/G-GA outperform ACGA and EA/G statistically significant with different stopping criteria. When it comes to the intensification of EDAs, heuristic method is combined with EDAs.
    显示于类别:[資訊工程學系暨研究所] 會議論文

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML110检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈