English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 10195746      線上人數 : 18105
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/121537


    題名: Development of Effective Estimation of Distribution Algorithms for Scheduling Problems
    作者: Chen, Shih-hsin;Chen, Min-chih;Chang, Pei-chann;Qingfu, Zhang Yuh-min;Chen, Shih-hsin;Chen, Min-chih;Chang, Pei-chann;Zhang, Qingfu;Chen, Yuh-min
    關鍵詞: effective estimation;distribution algorithm;adaptive ea;different computational time;effective eda algorithm;premature convergence;ea gga outperform acga;convergence speed analysis;population diversity;major idea;single machine;diversified solution heuristic method;probabilistic model;ea g-ga;just-in-time scheduling environment;earliness tardiness cost;experimental result;important linkage
    日期: 2009-08-10
    上傳時間: 2021-10-21 12:11:46 (UTC+8)
    摘要: Abstract The purpose of this paper is to establish some guidelines for designing effective Estimation of Distribution Algorithms (EDAs). These guidelines aim at balancing intensification and diversification in EDAs. Most EDAs are able to maintain some important linkages among variables. This advantage, however, may lead to the premature convergence of EDAs since the probabilistic models no longer generating diversified solutions. In addition, overfitting might occure in EDAs. This paper proposes guidelines based on the convergence speed analysis of EDAs under different computational times for designing effective EDA algorithms. The major ideas are to increase the population diversity gradually and by hybridizing EDAs with other meta-heuristics. Using these guidelines, this research further proposes an adaptive EA/G and EA/G-GA to improve the performance of EA/G. The proposed algorithm solved the single machine scheduling problems with earliness/tardiness cost in a just-in-time scheduling environment. The experimental results indicated that the Adaptive EA/G and EA/G-GA outperform ACGA and EA/G statistically significant with different stopping criteria. When it comes to the intensification of EDAs, heuristic method is combined with EDAs.
    顯示於類別:[資訊工程學系暨研究所] 會議論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML110檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋