淡江大學機構典藏:Item 987654321/121513
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64178/96951 (66%)
Visitors : 10018637      Online Users : 19775
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/121513


    Title: Utilization of Cassava Wastewater for Low-Cost Production of Prodigiosin via Serratia marcescens TNU01 Fermentation and Its Novel Potent α-Glucosidase Inhibitory Effect
    Authors: TL, Tran;Techato, K;VB, Nguyen;SL, Wang;AD, Nguyen;TQ, Phan;MD, Doan;Phoungthong, K
    Keywords: cassava wastewater;fermentation;bioreactor;S. marcescens;prodigiosin;α-glucosidase inhibitor;anti-diabetes;docking study
    Date: 2021-10-16
    Issue Date: 2021-10-19 12:10:40 (UTC+8)
    Publisher: MDPI
    Abstract: The purpose of this study was to reuse cassava wastewater (CW) for scaled-up production, via the fermentation of prodigiosin (PG), and to conduct an evaluation of its bioactivities. PG was produced at the yield of high 6150 mg/L in a 14 L-bioreactor system, when the designed novel medium (7 L), containing CW and supplemented with 0.25% casein, 0.05% MgSO4, and 0.1% K2HPO4, was fermented with Serratia marcescens TNU01 at 28 °C in 8 h. The PG produced and purified in this study was assayed for some medical effects and showed moderate antioxidant, high anti-NO (anti-nitric oxide), and potential α-glucosidase inhibitory activities. Notably, PG was first reported as a novel effective α-glucosidase inhibitor with a low IC50 value of 0.0183 µg/mL. The commercial anti-diabetic drug acarbose was tested for comparison and had a lesser effect with a high IC50 value of 328.4 µg/mL, respectively. In a docking study, the cation form of PG (cation-PG) was found to bind to the enzyme α-glucosidase by interacting with two prominent amino acids, ASP568 and PHE601, at the binding site on the target enzyme, creating six linkages and showing a better binding energy score (−14.6 kcal/mol) than acarbose (−10.5 kcal/mol). The results of this work suggest that cassava wastewater can serve as a low-cost raw material for the effective production of PG, a potential antidiabetic drug candidate.
    Relation: Molecules 26(20), 6270
    Appears in Collections:[Graduate Institute & Department of Chemistry] Journal Article

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML172View/Open
    Utilization of Cassava Wastewater for Low-Cost Production of Prodigiosin via Serratia marcescens TNU01 Fermentation and Its Novel Potent α-Glucosidase Inhibitory Effect.pdf3732KbAdobe PDF104View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback