淡江大學機構典藏:Item 987654321/121440
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8268889      在线人数 : 7114
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/121440


    题名: Sub-Population Genetic Algorithm with Mining Gene Structures for multiobjective FlowShop Scheduling Problems
    作者: Chang, Pei-Chann;Chen, Shih-Hsin;Liu, Chen-Hao
    关键词: Genetic algorithms;Multiobjective optimization;Pareto optimum solution;Minging gene structures;Scheduling problem
    日期: 2007-10
    上传时间: 2021-10-05 12:10:27 (UTC+8)
    摘要: According to previous research of Chang et al. [Chang, P. C., Chen, S. H., & Lin, K. L. (2005b). Two phase sub-population genetic algorithm for parallel machine scheduling problem. Expert Systems with Applications, 29(3), 705–712], the sub-population genetic algorithm (SPGA) is effective in solving multiobjective scheduling problems. Based on the pioneer efforts, this research proposes a mining gene structure technique integrated with the SPGA. The mining problem of elite chromosomes is formulated as a linear assignment problem and a greedy heuristic using threshold to eliminate redundant information. As a result, artificial chromosomes are created according to this gene mining procedure and these artificial chromosomes will be reintroduced into the evolution process to improve the efficiency and solution quality of the procedure. In addition, to further increase the quality of the artificial chromosome, a dynamic threshold procedure is developed and the flowshop scheduling problems are applied as a benchmark problem for testing the developed algorithm. Extensive tests in the flow-shop scheduling problem show that the proposed approach can improve the performance of SPGA significantly.
    關聯: Expert Systems with Applications 33(3), p.762-771
    DOI: 10.1016/j.eswa.2006.06.019
    显示于类别:[資訊工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML112检视/开启
    Sub-Population Genetic Algorithm with Mining Gene Structures for multiobjective FlowShop Scheduling Problems.pdf322KbAdobe PDF2检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈