This paper proposes an improved procedure for stochastic volatility model estimation with an application to Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) estimation. This improved procedure is composed of the following instrumental components: Fourier transform method for volatility estimation, and importance sampling for extreme event probability estimation. The empirical analysis is based on several foreign exchange series and the S&P 500 index data. In comparison with empirical results by RiskMetrics, historical simulation, and the GARCH(1,1) model, our improved procedure outperforms on average.
Relation:
International Journal of Theoretical and Applied Finance 17(2), 1450009