English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62805/95882 (66%)
Visitors : 3911351      Online Users : 355
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/121110


    Title: STUDY ON THE FLOW-FIBER COUPLING EFFECT AND ITS INFLUENCE ON THE SHRINKAGE OF FIBER-REINFORCED PLASTIC (FRP) INJECTION PARTs
    Authors: Lai, Cheng-Hong;Huang, Chao-Tsai (CT);Chu, Jia-Hao;Fu, Wei-Wen;Hwang, Sheng-Jye;Peng, Hsin-Shu;Wu, Chih-Che;Tu, Chun-I
    Keywords: fiber-reinforced plastics (FRP);flow-fiber coupling;micro-computerized tomography (-CT)
    Date: 2021-05-13
    Issue Date: 2021-08-26 12:13:05 (UTC+8)
    Publisher: SPE
    Abstract: The fiber-reinforced plastics (FRP) material has been applied into industry as one of the major lightweight technologies, especially for automotive or aerospace products. The reason why fibers can enhance plastics is because of their microstructures. One of those microstructures is fiber orientation distribution. Since the fiber orientations inside plastic matrix are very complex, they are not easy to be visualized and managed. In addition, there might be some interaction between flow and fiber during the injection molding processing, but not fully understood yet. In this study, the flow-fiber coupling effect on FRP injection parts has been investigated using a geometry system with three ASTM D638 specimens. The study methods include both numerical simulation and experimental observation. Results showed that in the presence of flow-fiber coupling the melt flow front advancement presents some variation, specifically at the geometrical corners of the system. Furthermore, through the fiber orientation distribution (FOD) study, the flow-fiber coupling effect is not significantly at the near gate region (NRG). It might result from too strong shear force to hold down the appearance of the flow-fiber interaction. However, at the end of filling region (EFR), the flow-fiber coupling effect tries to diminish the flow direction orientation tensor component A11 and enhance the cross-flow orientation tensor component A22 simultaneously. It ends up with the cross-flow direction dominant at the EFR. This orientation distribution behavior variation has been verified using micro-computerized tomography (-CT) scan and images analysis by AVIZO software. Finally, the flow-fiber coupling effect also verified based on the tensile stress testing and the shrinkage of the injected parts through different flow domains.
    Relation: SPE Technical Papers, ANTEC2021
    Appears in Collections:[化學工程與材料工程學系暨研究所] 期刊論文

    Files in This Item:

    There are no files associated with this item.

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback