淡江大學機構典藏:Item 987654321/120979
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64187/96966 (66%)
造访人次 : 11335955      在线人数 : 60
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/120979


    题名: Multiobjective control for nonlinear stochastic Poisson jump-diffusion systems via T-S fuzzy interpolation and Pareto optimal scheme.
    作者: Wu, Chien-Feng;Chen, Bor-Sen;Zhang, Weihai
    关键词: Multiobjective control design;Pareto optimality;Nonlinear stochastic Poisson jump-diffusion system;Takagi-Sugeno (T-S) fuzzy model;Stochastic exponential stability;LMI-constrained MOEA
    日期: 2020-04-15
    上传时间: 2021-08-23 12:10:51 (UTC+8)
    出版者: ELSEVIER Fuzzy Sets and Systems
    摘要: Unlike the conventional mixed control design method, this study provides a multiobjective fuzzy control design method for nonlinear stochastic Poisson jump-diffusion systems to simultaneously achieve optimal cost and robustness performance in the Pareto optimal sense via the proposed evolutionary algorithm. For a nonlinear stochastic Poisson jump-diffusion system, the Poisson jumps cause its system behaviors to change intensely and discontinuously. To design an efficient controller for a nonlinear stochastic jump-diffusion system is much more difficult. On the other hand, the and performance indices generally conflict with each other and can be regarded as a multiobjective optimization problem (MOP). It is not easy to directly solve this MOP, owing to (i) the Pareto front of the MOP is difficult to obtain through direct calculation; (ii) the MOP is a Hamilton-Jacobi-Inequalities (HJIs)-constrained MOP. To address these issues, we use Takagi-Sugeno (T-S) interpolation scheme to transform the HJIs-constrained MOP into a linear matrix inequality (LMI)-constrained MOP. Then, we employ the proposed LMI-constrained multiobjective optimization evolutionary algorithm (LMI-constrained MOEA) to efficiently search for the Pareto optimal solution, from which the designer can select one kind of design according to their preference. Finally, a design example is given to illustrate the design procedure and to verify our results.
    關聯: Fuzzy Sets and Systems,385,p.148-168
    DOI: 10.1016/j.fss.2019.02.020
    显示于类别:[電機工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML116检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈