English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 60861/93527 (65%)
造訪人次 : 1496656      線上人數 : 18
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/120789

    題名: The structures and thermoelectric properties of Zn-Sb alloy films fabricated by electron beam evaporation through an ion beam assisted deposition
    作者: Hsu, Shih-Chieh;Hong, Jhen-Yong;Chen, Cheng-Lung;Chen, Sheng-Chi;Zhen, Jia-Han;Hsieh, Wen-Pin;Chen, Yang-Yuan;Chuang, Tung-Han
    關鍵詞: Zn-Sb film;Ion beam assisted deposition;Seebeck coefficient;Thermoelectric properties
    日期: 2021-02-28
    上傳時間: 2021-05-08 12:10:20 (UTC+8)
    摘要: Zn-Sb alloys are potential low-cost and non-toxic p-type thermoelectric materials for applications in the temperature range between 300 and 700 K. In this experiment, Zn-Sb alloy films were prepared by electron beam evaporation through an ion beam assisted deposition (IBAD). Our studies have confirmed that the structural phase, chemical composition, chemical binding, carrier concentration and microstructures of the film can indeed be effectively controlled by the voltage and current of the ion beam. Particularly, the carrier concentration of the film will rise along with the increase of the argon ion beam current. When the ion beam currents are set at 0.2–0.6 A, the carrier concentrations of the films can be controlled at around 1019–1020 cm−3, which fall within the optimal carrier concentration range for Zn-Sb based thermoelectric materials. The temperature dependence of Seebeck coefficient and the electrical conductivity of the films were measured to evaluate their thermoelectric performance. The results indicate that the film with Zn4Sb3 + ZnSb mixed phase will have better thermoelectric properties. A high power factor value of ~1280 μW/m-K2 is obtained in the films assisted by the ion beam current of 0.6 A. Our results demonstrate that the IBAD technique is extraordinary promising to fabricate Zn-Sb films with excellent thermoelectric performance and can be used to produce other potential thermoelectric materials.
    關聯: Applied Surface Science 540, 148264
    DOI: 10.1016/j.apsusc.2020.148264
    顯示於類別:[物理學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋