English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58323/91876 (63%)
造访人次 : 14054221      在线人数 : 40
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/120716

    题名: On the Activity/Selectivity and Phase Stability of Thermally Grown Copper Oxides during the Electrocatalytic Reduction of CO2
    作者: Juan-Jesús, Velasco-Vélez;Chuang, Cheng-Hao;Gao, Dunfeng;Zhu, Qingjun;Ivanov, Danail;Jeon, Hyo Sang;Arrigo, Rosa;Mom, Rik Valentijn;Stotz, Eugen;Wu, Heng-Liang;Jones, Travis E.;Cuenya, Beatriz Roldan;Axel, Knop-Gericke;Schlögl, Robert
    关键词: cathodic CO2 reduction reaction;oxide derived copper;electrocatalysis
    日期: 2020-09-09
    上传时间: 2021-05-05 12:11:55 (UTC+8)
    摘要: Revealing the active nature of oxide-derived copper is of key importance to understand its remarkable catalytic performance during the cathodic CO2 reduction reaction (CO2RR) to produce valuable hydrocarbons. Using advanced spectroscopy, electron microscopy, and electrochemically active surface area characterization techniques, the electronic structure and the changes in the morphology/roughness of thermally oxidized copper thin films were revealed during CO2RR. For this purpose, we developed an in situ cell for X-ray spectroscopy that could be operated accurately in the presence of gases or liquids to clarify the role of the initial thermal oxide phase and its active phase during the electrocatalytic reduction of CO2. It was found that the Cu(I) species formed during the thermal treatment are readily reduced to Cu0 during the CO2RR, whereas Cu(II) species are hardly reduced. In addition, Cu(II) oxide electrode dissolution was found to yield a porous/void structure, where the lack of electrical connection between isolated islands prohibits the CO2RR. Therefore, the active/stable phase for CO2RR is metallic copper, independent of its initial phase, with a significant change in its morphology upon its reduction yielding the formation of a rougher surface with a higher number of underco-ordinated sites. Thus, the initial thermal oxidation of copper in air controls the reaction activity/selectivity because of the changes induced in the electrode surface morphology/roughness and the presence of more undercoordinated sites during the CO2RR.
    關聯: ACS Catal. 10, p.11510-11518
    DOI: 10.1021/acscatal.0c03484
    显示于类别:[電機工程學系暨研究所] 期刊論文


    档案 描述 大小格式浏览次数
    On the Activity/Selectivity and Phase Stability of Thermally Grown Copper Oxides during the Electrocatalytic Reduction of CO2.pdf3091KbAdobe PDF13检视/开启



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈