English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62805/95882 (66%)
Visitors : 3945150      Online Users : 609
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/120685


    Title: A rapid and highly sensitive paper-based colorimetric device for the on-site screening of ammonia gas
    Authors: Khachornsakkul, K.;Hung, K.-H.;Chang, J.-J.;Dungchai, W.;Chen, C.-H.
    Date: 2021-03-02
    Issue Date: 2021-04-30 12:10:46 (UTC+8)
    Publisher: Royal Society of Chemistry
    Abstract: A rapid and highly sensitive paper-based colorimetric device for the on-site detection of ammonia (NH3) gas is presented in this study. The detection principle of this device is based upon a change of color from red to yellow on a paper that has been immobilized with a pH indicator, i.e., methyl orange (pKa = 3.4), in the presence of NH3 gas. The color signal of the device can be measured through the hue channel of an HSL system via the application of a smartphone. This device can detect the amount of NH3 gas within 3 min. The linear relationship between the NH3 gas concentration and the hue signal was found to be in the range from 6.0 to 54.0 ppbv with R2 = 0.9971, and the limit of detection was found to be 2.0 ppbv. In addition, this device showed remarkably high selectivity to NH3 gas amongst the other common volatile organic compounds and general gases that are present in environmental air without the assistance of any membrane material. Furthermore, we demonstrated the applicability of this device for the detection of total NH3 gas at a chicken farm and in a laboratory, with relative standard deviations of 6.2% and 5.4%, respectively. The developed NH3 gas device in the study is easy to operate and cost-effective, with the reduction of a large consumption of chemical reagents; also, its signals can be measured simply and then recorded through a smartphone. It is suitable for the application of routine on-site detection of NH3 gas, especially concerning regions which have limited resources.
    Relation: Analyst, 146(9), p.2919–2927
    DOI: 10.1039/D1AN00032B
    Appears in Collections:[化學學系暨研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML129View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback