淡江大學機構典藏:Item 987654321/120549
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 62822/95882 (66%)
造访人次 : 4015542      在线人数 : 546
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/120549


    题名: Occluded Traffic Signs Recognition
    作者: Yen, Shwu-Huey;Shu, Chun-Yung;Hsu, Hui-Huang
    关键词: Occlusion;Traffic sign;Recognition;GTSRB;Convolutional Neural Network;Mask
    日期: 2020-03-05
    上传时间: 2021-04-20 12:10:43 (UTC+8)
    摘要: Traffic sign recognition is very important in the intelligent driving. It can remind drivers to react properly to the road condition and increase the driving safety. One of the challenges in recognizing traffic sign is occlusion. In this paper, we focus on this problem particularly in Taipei and the vicinity including Taipei and New Taipei City. We propose a convolution neural network equipped with the regional masks to solve the occlusion traffic sign recognition. Traffic sign images of Taipei and New Taipei City are collected mainly from Google Maps for training and testing. Finally, the proposed method is tested both on our own dataset and German public dataset GTSRB. The experimental results demonstrated the occlusion problem is being greatly alleviated and the result is very promising.
    關聯: Advances in Intelligent Systems and Computing 1130
    DOI: 10.1007/978-3-030-39442-4_58
    显示于类别:[資訊工程學系暨研究所] 會議論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML66检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈