English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64180/96952 (66%)
造訪人次 : 11332745      線上人數 : 82
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/120549


    題名: Occluded Traffic Signs Recognition
    作者: Yen, Shwu-Huey;Shu, Chun-Yung;Hsu, Hui-Huang
    關鍵詞: Occlusion;Traffic sign;Recognition;GTSRB;Convolutional Neural Network;Mask
    日期: 2020-03-05
    上傳時間: 2021-04-20 12:10:43 (UTC+8)
    摘要: Traffic sign recognition is very important in the intelligent driving. It can remind drivers to react properly to the road condition and increase the driving safety. One of the challenges in recognizing traffic sign is occlusion. In this paper, we focus on this problem particularly in Taipei and the vicinity including Taipei and New Taipei City. We propose a convolution neural network equipped with the regional masks to solve the occlusion traffic sign recognition. Traffic sign images of Taipei and New Taipei City are collected mainly from Google Maps for training and testing. Finally, the proposed method is tested both on our own dataset and German public dataset GTSRB. The experimental results demonstrated the occlusion problem is being greatly alleviated and the result is very promising.
    關聯: Advances in Intelligent Systems and Computing 1130
    DOI: 10.1007/978-3-030-39442-4_58
    顯示於類別:[資訊工程學系暨研究所] 會議論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML134檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋