English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 58237/91808 (63%)
造訪人次 : 13787117      線上人數 : 46
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/120477

    題名: Economic Design of Solar-driven Membrane Distillation Systems for Desalination
    作者: Chen, Yih-Hang;Hung, Hwo-Gan;Ho, Chii-Dong;Chang, Hsuan
    關鍵詞: solar energy;desalination;optimization;air gap membrane distillation;direct contact membrane distillation;vacuum membrane distillation
    日期: 2020-12-24
    上傳時間: 2021-04-10 12:10:16 (UTC+8)
    摘要: Solar-driven membrane distillation (SDMD) for desalination is a feasible method to solve water and energy resource issues. The design and operation of SDMD is different from continuous and steady state processes, such as common chemical plants, due to the intermittent and unpredictive characteristics of solar radiation. Employing the steady state and dynamic simulation models developed on the platform of Aspen Custom Modeler®, this paper presents a two-stage design approach for the SDMD systems using different types of membrane distillation configurations, including AGMD (air gap MD), DCMD (direct contract MD) and VMD (vacuum MD). The first design stage uses the steady state simulation model and determines equipment sizes for different constant-value solar radiation intensities with the objective of minimizing total annual cost. The second design stage is implemented on the SDMD systems with process control to automatically adjust the operating flow rates using the dynamic simulation model. Operated with the yearly solar radiation intensity of Taiwan, the unit production costs (UPCs) of the optimal SDMD systems using AGMD, DCMD, and VMD are $2.71, 5.38, and 10.41 per m3 of water produced, respectively. When the membrane unit cost is decreased from $90/m2 to $36/m2, the UPC of the optimal solar-driven AGMD system can be reduced from $2.71/m3 to $2.04/m3.
    關聯: Membranes 11(1), 15 (20 pages)
    DOI: 10.3390/membranes11010015
    顯示於類別:[化學工程與材料工程學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    Economic Design of Solar-driven Membrane Distillation Systems for Desalination.pdf4892KbAdobe PDF1檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋