English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 58210/91779 (63%)
造訪人次 : 13778068      線上人數 : 66
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/120459


    題名: Estimating the failure rate of the log-logistic distribution by smooth adaptive and bias-correction methods
    作者: Zheng, Xi;Chiang, Jyun-You;Tsai, Tzong-Ru;Wanga, Shuai
    關鍵詞: Log-logistic distribution;Smooth adaptive method;Failure rate;Bias reduction;Maximum likelihood estimation
    日期: 2021-06
    上傳時間: 2021-04-07 12:11:19 (UTC+8)
    出版者: Elsevier Ltd
    摘要: The Log-logistic distribution has successfully earned attention in practical applications due to its good statistical properties. Because the traditional maximum likelihood estimators of the Log-logistic distribution parameters do not have an explicit form and are biased when the sample size is small. Therefore, the estimation and prediction of the failure rate is not well. In this study, we study the quality of the maximum likelihood, asymptotic maximum likelihood and bias-corrected maximum likelihood methods, and propose a smooth adaptive estimation method for estimating the Log-logistic distribution parameters. To reduce the bias of the asymptotic maximum likelihood and smooth adaptive estimators of the Log-logistic distribution parameters, the bias-corrected method is used to improve the asymptotic maximum likelihood and smooth adaptive estimation methods. Two new bias-corrected estimation methods are also proposed to obtain reliable estimates of the Log-logistic distribution parameters. An intensive Monte Carlo simulation study is conducted to evaluate the performance of these estimation methods. Simulation results show that the smooth adaptive and two new bias-corrected estimation methods are more competitive than other competitors. Finally, two real example is used for illustrating the applications of the smooth adaptive, CAML and CSA estimation methods.
    關聯: Computers & Industrial Engineering 156, p.107188
    DOI: 10.1016/j.cie.2021.107188
    顯示於類別:[統計學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML5檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋