English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 9687494      線上人數 : 16114
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/120447


    題名: 應用樹狀分類器與類神經網路於影像構圖與調性風格美學評價的當代專業攝影指引之研究
    其他題名: On Professional Contemporary Style Photographing Instruction Based on Neural Tree Based Classifiers Applied to Image Aesthetics Assessment
    作者: 吳孟倫
    關鍵詞: 計量審美學;資料探勘;決策樹;隨機森林;類神經網路;Computational aesthetics;data mining;decision tree;random forest;artificial neural networks
    日期: 2017-07-20
    上傳時間: 2021-03-25 12:13:25 (UTC+8)
    摘要: In this dissertation, we study on how to use artificial intelligence and data mining technologies to make computers able to perceive the concept of beauty, which is an abstract idea, and design a photographing instruction system accordingly. We collect contemporary style images captured in recent years on social networks for analysis. In our instruction system, there are two parts of instruction, one is image characteristics, and the other is image composition. The image characteristics refers to the color and textures, while the image composition refers to the structure of an image.
    Our proposed photographing instructor is composed of tree-based classifiers and artificial neural networks, and form a random forest to predict whether an image meets the criterions of the contemporary style. Binary decision tree are built for photographing instruction. However, the decision tree suffers from axis-aligned problem, which limits its accuracy. Therefore, we combine the decision tree and neural network, and use the subsets to build multiple random trees as random forest to improve the accuracy. We also described about the limitations of the instruction system. The system gives semantic sentences to users for image characteristics enhancement, and use blocks to indicate which regions should be improved for image composition.
    In the experiments, we predict whether an image is favorable. When using image characteristics and composition features separately, and achieved 85% accuracy. When combining the two types of features, the accuracy was above 91%. In addition, the proposed instruction system is able to give correct suggestions. After applying the suggestions from our proposed system, the colors were more harmonized, the compositions were more balanced, and the main subjects were enhanced.
    顯示於類別:[資訊工程學系暨研究所] 專書

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML130檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋