English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 62570/95233 (66%)
造訪人次 : 2559586      線上人數 : 272
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/120393

    題名: Multi-style image transfer system using conditional cycleGAN
    作者: Tu, Ching-Ting;Lin, Hwei Jen;Tsia, Yihjia
    關鍵詞: Convolutional neural network (CNN);deep learning;generative adversarial net (GAN);conditional GAN (CGAN);CycleGAN;conditional CycleGAN;PatchGAN;image style transfer
    日期: 2021-02
    上傳時間: 2021-03-24 12:10:44 (UTC+8)
    出版者: Taylor & Francis
    摘要: This paper aims to extend the capability of Cycle-Consistent Adversarial Network (CycleGAN) by equipping it with a conditional constraint and extend it into a multi-style image transfer system that can transfer images among more than two image domains. The conditional constraint is given in the form of the target style feature map instead of a one-hot vector, and has shown to provide better transfer results. The proposed system offers greater flexibility for users to choose the style for image transfer. Experimental results show that such an architecture is not only feasible but also yields good results. The proposed architecture can be extended to other transformation applications, such as facial expressions transfer, face aging, and synthesis of various features.
    關聯: The Imaging Science Journal
    DOI: 10.1080/13682199.2020.1759977
    顯示於類別:[資訊工程學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋