淡江大學機構典藏:Item 987654321/120222
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 62805/95882 (66%)
造访人次 : 3945002      在线人数 : 609
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/120222


    题名: Novel green and sustainable shape-stabilized phase change materials for thermal energy storage
    作者: Lai, Wei-Chi;Cai, Yi-Ting;Cai, Yan-Lin
    关键词: Poly (ethylene glycol);Poly (L-lactic acid);Phase change material;Thermal energy storage
    日期: 2020-12-24
    上传时间: 2021-03-17 12:11:06 (UTC+8)
    摘要: Poly (ethylene glycol) (PEG) blended with poly (L-lactic acid) (PLLA) as novel green and sustainable shape-stabilized phase change materials (PCMs) were prepared and characterized in this study. The miscibility and morphology of the blends played an important role in the properties of the PCMs. The partial miscibility between PEG and PLLA resulted in suitable latent heat and a low leakage percentage of PCMs. The typical spherulite structure with a Maltese cross was examined in neat PLLA, as observed using polarized optical microscopy. However, the addition of PEG to PLLA led to the formation of ring-banded spherulites due to the presence of PEG altering the aggregation and twisting the PLLA lamellae. These PLLA crystalline structures can capture liquid (including molten PEG), stabilize the shape, and prevent leakage. The thermal mechanical analysis results indicated that the thickness of the PEG/PLLA blends was not significantly changed during the phase change process. The PEG/PLLA 75/25 blends exhibited appropriate film forming properties and mechanical strength. Moreover, differential scanning calorimetry analysis demonstrated the largest latent heat of melting (130.26 J/g), which could have great potential for developing novel phase change materials for thermal energy storage.
    關聯: Journal of the Taiwan Institute of Chemical Engineers 117, p.257-264
    DOI: 10.1016/j.jtice.2020.12.013
    显示于类别:[化學工程與材料工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML82检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈