English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58237/91808 (63%)
造访人次 : 13788913      在线人数 : 65
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/120170


    题名: Rapid Detection of Glucose on Nanostructured Gold Film Biosensor by Surface-Enhanced Raman Spectroscopy
    作者: Sung, Cheng-Ju;Chao, Szu-Han;Hsu, Shih-Chieh
    关键词: SERS;AuFON;cyclic voltammetry;Rhodamine 6G;glucose;biosensor
    日期: 2021-02-19
    上传时间: 2021-03-12 12:11:01 (UTC+8)
    摘要: In this report, we summarized our development of biosensors for Rhodamine 6G and in vitro glucose detection based on surface-enhanced Raman scattering technology. For the detection of both Rhodamine 6G and in vitro glucose, a nature-patterned substrate with gold films over nanostructures (NPS-AuFON) was used as the surface-enhanced Raman scattering sensor platform. The enhancement factor was calculated at 9 × 107. In the processing of the substrate, cyclic voltammetry was used to form nano-gold particles under different conditions. The Rhodamine 6G and glucose detection were then achieved on this substrate. Furthermore, we combined the potentiostatic technique and electrochemical adsorption to best detect glucose in low concentrations. The glucose oxidation potential (100 mV) was used to capture glucose close to the surface of the NPS-AuFON. The quantitative detection of glucose in solution and in situ inspection were confirmed. Further, we determined that this surface modification technology can reach the goal of experiments set by the World Health Organization to judge whether or not a patient is a diabetic by detecting a glucose concentration of 11.1 mmol/L (mg/dL) at a minimum.
    關聯: Biosensors 11(2), 54 (11 pages)
    DOI: 10.3390/bios11020054
    显示于类别:[化學工程與材料工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML11检视/开启
    Rapid Detection of Glucose on Nanostructured Gold Film Biosensor by Surface-Enhanced Raman Spectroscopy.pdf4247KbAdobe PDF0检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈