淡江大學機構典藏:Item 987654321/120169
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 60861/93638 (65%)
造访人次 : 1111438      在线人数 : 23
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/120169


    题名: Unraveling the anomalous channel-length-dependent blue energy conversion using engineered alumina nanochannels
    作者: Su, Yen-Shao;Hsu, Shih-Chieh;Peng, Po-Hsien;Yang, Jie-Yu;Gao, Mengyao;Yeh, Li-Hsien
    关键词: Nanofluidics;Nanopore;Osmotic power;Ion transport;Reverse electrodialysis
    日期: 2021-06
    上传时间: 2021-03-12 12:10:59 (UTC+8)
    摘要: Blue energy conversion, where the chemical energy stored in salinity gradients can be converted into electricity with ion-selective nanochannel membranes, has considered to be one of the most promising renewable energies. Conventional understanding on this energy suggests that as to largely reduce the resistance, ultrashort channel membranes are required to gain high-energy output. To understand the channel-length-dependent blue energy conversion in detail, we engineered a series of highly ordered and uniform ~23.0 nm in diameter alumina nanochannel membranes with various lengths. Most anomalously, our experiments however show that for sufficiently short nanochannels, the shorter the channel length, regardless of surface charge nature, the smaller the generated power, violating the past understanding. The anomalous channel-length-dependent blue energy conversion is well supported by our rigorous model. The modeling reveals that ultrashort nanochannels will induce the significant ion concentration polarization effect, which appreciably undermines effective salinity ratio and ion selectivity in the nanochannel. If this effect dominates, the nanofluidic osmotic power turns into a decrease with decreasing channel length. Both the experimental and theoretical results reported consistently highlight the importance of osmotic ion transport especially in ultrashort nanochannels, and this finding shed light on the design of high-efficiency blue energy harvesters.
    關聯: Nano Energy 84, 105930
    DOI: 10.1016/j.nanoen.2021.105930
    显示于类别:[化學工程與材料工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML58检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈