English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64178/96951 (66%)
造访人次 : 10190642      在线人数 : 18090
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/120147


    题名: An intrusion detection model using improved convolutional deep belief networks for wireless sensor networks
    作者: Weimin Wen;Cuijuan Shang;Zaixiu Dong;Huan-Chao Keh;Diptendu Sinha Roy
    关键词: intrusion detection;improved convolutional deep belief networks;redundancy detection;deeply compressed algorithm;wireless sensor networks;WSNs
    日期: 2021-01-28
    上传时间: 2021-03-11 12:12:49 (UTC+8)
    摘要: Intrusion detection is a critical issue in the wireless sensor networks (WSNs), specifically for security applications. In literature, many classification algorithms have been applied to address the intrusion detection problems. However, their efficiency and scalability still need to be improved. This paper proposes an improved convolutional deep belief network-based intrusion detection model (ICDBN_IDM), which consists of a redundancy detection algorithm based on the convolutional deep belief network and a performance evaluation strategy. The redundancy detection can remove non-effective nodes and data, and save the energy consumption of the whole network. The improved algorithm extracts features from normal and abnormal behaviour samples by using unsupervised learning and overcomes the problem of unknown or less prior samples. Compared with the commonly used machine learning mechanisms, the proposed ICDBN_IDM achieves high intrusion detection accuracy, reduces the ratio of the false alarm while saving the energy consumption of sensor nodes.
    關聯: International Journal of Ad Hoc and Ubiquitous Computing 36(1), p.20-31
    DOI: 10.1504/IJAHUC.2021.112980
    显示于类别:[資訊工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML156检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈