English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 62572/95237 (66%)
造訪人次 : 2547915      線上人數 : 301
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/120133

    題名: Functional clustering and missing value imputation of traffic flow trajectories
    作者: Li, Pai-Ling;Chiou, Jeng-Min
    關鍵詞: Functional data analysis;missing value;principal component analysis;traffic flow rate;unsupervised learning;vehicle loop detector
    日期: 2020-07-21
    上傳時間: 2021-03-10 12:13:58 (UTC+8)
    出版者: Taylor & Francis
    摘要: Patterns of traffic flow trajectories play an essential role in analysing traffic monitoring data in transportation studies. This research presents a data-adaptive clustering approach to explore traffic flow patterns and a unified algorithm to impute missing values for incomplete traffic flow trajectories. We recommend using subspace-projected functional data clustering with the assumption that each observed daily traffic flow trajectory is a realization of a random function sampled from a mixture of stochastic processes, and each subprocess represents a cluster subspace spanned by the mean function and eigenfunctions of the covariance kernel of the random trajectories. The unified algorithm combines probabilistic functional clustering with functional principal component analysis to propose a mixture prediction for missing value imputation. The proposed methods effectively unravel distinctive daily traffic flow patterns and improve the accuracy of missing value imputation. The advantage of the proposed approaches is demonstrated through numerical studies of a real traffic flow data application.
    關聯: Transportmetrica B: Transport Dynamics 9(1), p.1-21
    DOI: 10.1080/21680566.2020.1781706
    顯示於類別:[統計學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋