English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 62830/95882 (66%)
造訪人次 : 4039910      線上人數 : 1034
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/120008


    題名: Image-format-independent Tampered Image Detection Based on Overlapping Concurrent Directional Patterns and Neural Networks
    作者: Wu, M. L.;Fahn, C. S.;Chen, Y. F.
    關鍵詞: Digital image forensics;Digital image authentication;Tampered image detection;Artificial neural network
    日期: 2017-03-13
    上傳時間: 2021-03-04 12:13:11 (UTC+8)
    出版者: Springer Netherlands
    摘要: With the advancement of photo editing software, digital documents can easily be altered, which causes some legal issues. This paper proposes an image authentication method, which determines whether an image is authentic. Unlike many existing methods that only work with images in the JPEG format, the proposed method is image format independent, implying that it works with both noncompressed images and images in all compression formats. To improve the authentication accuracy, some strategies, such as overlapping image blocks only on concurrent directions, using a two-scale local binary pattern operator, and choosing the mean deviation instead of the standard deviation, are applied. A back-propagation neural network (BPNN) is used instead of support vector machines (SVMs) for classification to make online learning easier and achieve higher accuracy. In our experiments, we used the CASIA Database (CASIA TIDE v1.0) of compressed images and the Columbia University Digital Video Multimedia (DVMM) dataset of uncompressed images to evaluate our image authentication method. This benchmark dataset includes two types of image tampering, namely image splicing and copy–move forgery. Experiments were performed using both the SVM and BPNN classifiers with various parameters. We determined that the BPNN achieved a higher accuracy of up to 97.26 %.
    關聯: Applied Intelligence 47(2), pp. 347-361
    DOI: 10.1007/s10489-017-0893-4
    顯示於類別:[資訊工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML39檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋